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Abstract

Biological named entity recognition is a critical task for automatically mining knowledge from biological literature. In this paper, this task
is cast as a sequential labeling problem and Conditional Random Fields model is introduced to solve it. Under the framework of Conditional
Random Fields model, rich features including literal, context and semantics are involved. Among these features, shallow syntactic features are
first introduced, which effectively improve the model’s performance. Experiments show that our method can achieve an F-measure of 71.2%
in an open evaluation data, which is better than most of state-of-the-art systems.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

With the development of computational and biological tech-
nology, the amount of biological literature is increasing fleet-
ingly. MEDLINE database has collected 11 million biological
related records since 1965 and is increasing at the rate of 1500
abstracts a day [1]. The research literature is a major reposi-
tory of knowledge. From them, researchers can find knowledge,
such as connections between diseases and genes, the relation-
ship between genes and specific biological functions and the
interactions between different proteins and so on.

The explosion of literature in the biological field has pro-
vided an opportunity for natural language processing tech-
niques to aid researchers and curators of databases in the
biological field by providing text mining services. Yet typi-
cal natural language processing tasks such as named entity
recognition (NER), information extraction, and word sense
disambiguation are particularly challenging in the biological
domain with its highly complex and idiosyncratic language.
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Biological NER is a critical task for automatically mining
knowledge from biological literature. Two special workshops
for biological NER BioCreAtIvE [2] (Critical Assessment for
Information Extraction in Biology) and JNLPBA [3] (Joint
Workshop on Natural Language Processing in Biomedicine and
its Applications) were held in 2004 and each of them contained
an open evaluation of biological NER technology. The data and
guidelines afforded by the two workshops greatly promote the
biological NER technology. According to the evaluation results
of JNLPBA2004, the best system can achieve an F-measure of
72.6%. This is somewhat lower than figures for similar tasks
from the news wire domain. For example, extraction of organi-
zation names has been done at over 90% F-measure [2]. There-
fore, biological NRE technology needs further study in order
to make it applicable.

Current research methods for NER can be classified into
three categories: dictionary-based methods [4], rule-based
methods [5] and machine learning based methods. In biological
domain, dictionary-based methods suffer from low recall due to
new entities appearing continually with the advancing biology
research. Biological named entities do not follow any nomen-
clature, which makes rule-based method hard to be perfect.
Besides, rule-based method itself is hard to port to new applica-
tions. More and more machine learning methods are introduced
to solve the biological NER problem, such as Hidden Markov
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Model [6] (HMM), Support Vector Machine [7] (SVM), Max-
imum Entropy Markov Model [8] (MEMM) and Conditional
Random Fields [1,9] (CRFs).

Biological NER problem can be cast as a sequential labeling
problem. CRFs for sequences labeling offer advantages over
both generative models like HMM and classifiers applied at
each sequence position [10]. In this research, we utilize CRFs
model involving rich features to extract biological named en-
tities from biological literature. The feature set includes or-
thographical features, context features, word shape features,
prefix and suffix features, Part of Speech (POS) features and
shallow syntactic features. Among these features, shallow syn-
tactic features are first introduced to CRFs model and do bound-
ary detection and semantic labeling at the same time, which
effectively improve the model’s performance. Although some
features have been used by some researchers, we show the ef-
fect of each kind of feature in detail, which can afford valu-
able reference to other researchers. Our method does not need
any dictionary resources and post-processing, so it has strong
adaptability. Experiments show that our method can achieve an
F-measure of 71.2% in JNLPBA test data which is better than
most of state-of-the-art systems.

The remainder of this paper is structured as follows. In Sec-
tion 2, we define the problem of biological NER and intro-
duce its unique characteristics compared to news wire domain.
In Section 3, a brief introduction of linear-chain CRFs model
is given. In Section 4 we explain the features involved in our
method. Experiment results are shown in Section 5. Section 6
is a brief conclusion.

2. Biological NER

Biological NER can be addressed as a sequential labeling
problem. It is defined as recognizing objects of a particular
class in plain text. Depending on required application, NER
can recognize objects ranging from protein/gene names to dis-
ease/virus names. In practice, we regard each word in a sen-
tence as a token and each token is associated with a label. Each
label with a form of B–C, I–C or O indicates not only the cat-
egory of a named entity (NE) but also the location of the token
within the NE. In this label denotation, C is the category label;
B and I are location labels, standing for the beginning of an en-
tity and inside of an entity, respectively. O indicates that a token
is not part of an NE. Fig. 1 is an example of biological NER.

Biological NER is a challenging problem. There are many
different aspects to deal with compared to news wire domain.
In general, biological NEs do not follow any nomenclature [11]

Total content of T lymphocytes was decreased 1.5-fold in peripheric blood 

O   O   O B-cell_type  I-cell_type  O    O        O      O    O             O 

Fig. 1. An example of biological NER.

Table 1
Biological named entities label list

Meaning Label

Beginning of protein B-protein Inside protein I-protein
Beginning of DNA B-DNA Inside DNA I-DNA
Beginning of RNA B-RNA Inside RNA I-RNA
Beginning of cell_type B-cell_type Inside cell_type I-cell_type
Beginning of cell_line B-cell_line Inside cell_line I-cell_line
Others O

and can comprise long compound words and short abbrevia-
tions. Biological NEs are often English common nouns (as op-
posed to proper nouns, which, are the nouns normally associ-
ated with names) and are often descriptions [12]. For example,
some Drosophila (fruit fly) gene names are blistery, inflated,
period, punt and midget. Some NEs contain various symbols
and other spelling variations. On average, any NE of interest
has five synonyms. An NE may also belong to multiple cate-
gories intrinsically; an NE of one category may contain an NE
of another category inside it [13].

In natural language processing domain, Generative Models
and Discriminative Models are often used to solve the sequen-
tial labeling problem, such as NER. Recently, Discriminative
Models are preferred due to their unique characteristics and
good performance [14]. Generative Models define a joint proba-
bility distribution p(X, Y ) where X and Y are random variables,
respectively, ranging over observation sequences and their cor-
responding label sequences. In order to define a joint distribu-
tion of this nature, generative models must enumerate all pos-
sible observation sequences—a task which, for most domains,
is intractable unless observation elements are represented as
isolated units, independent from the other elements in an ob-
servation sequence. Discriminative Models directly solve the
conditional probability p(Y |X). The conditional nature of such
models means that no effort is wasted on modeling the obser-
vations and one is free from having to make unwarranted inde-
pendent assumptions about these sequences; arbitrary attributes
of the observation data may be captured by the model, with-
out the modeler having to worry about how these attributes are
related.

This paper utilizes a Discriminative Model—CRFs to solve
biological NER problem. Using the definition in [2], we recog-
nize five categories of entities. There are 11 labels in all using
BIO notation mentioned above. All labels are shown in Table
1. Each token in the biological text will be assigned with one
of the 11 labels in the recognition results.



C. Sun et al. / Computers in Biology and Medicine 37 (2007) 1327–1333 1329

3. CRFs model

CRFs model is a kind of undirected graph model [14]. A
graphical model is a family of probability distributions that
factorize according to an underlying graph. The main idea is to
represent a distribution over a large number of random variables
by a product of local functions that each depend on only a small
number of variables [15]. The power of graph model lies in
that it can model multi-variables, while an ordinary classifier
can only predicate one variable.

The result of NER is a label sequence, so linear-chain CRFs
model is adopted in this research.

Let y, x be random vectors, � = {�k} ∈ RK be a parameter
vector, and {fk(y, y′, xt )}Kk=1 be a set of real-valued feature
functions. Then a linear-chain CRF is a distribution p(y|x)that
takes the form

p(y|x) = 1

Z(x)
exp

{
K∑

k=1

�kfk(yt , yt−1, xt )

}
, (1)

in which Z(x) is an instance-specific normalization function.

Z(x) =
∑
y

exp

{
K∑

k=1

�kfk(yt , yt−1,xt )

}
. (2)

For the application of linear-chain CRFs model, the key prob-
lem is how to solve the parameter vector �={�k}. This is done
during the training process.

Suppose there are iid training data D ={x(i), y(i)}Ni=1, where

each x(i)={x(i)
1 , x

(i)
2 , . . . , x

(i)
T } is a sequence of inputs and each

y(i) = {y(i)
1 , y

(i)
2 , . . . , y

(i)
T } is a sequence of corresponding pre-

dictions. Then parameter estimation is performed by penalized
maximum conditional log likelihoodl(�),

l(�) =
N∑

i=1

log p(y(i)|x(i)). (3)

Putting formula (1) into formula (3), we get

l(�) =
N∑

i=1

T∑
t=1

K∑
k=1

�kfk(y
i
t , y

i
t−1, x(i)

t )

−
N∑

i=1

log Z(x(i)). (4)

In order to avoid overfitting, a penalty term is involved, formula
(4) becomes

l(�) =
N∑

i=1

T∑
t=1

K∑
k=1

�kfk(y
i
t , y

i
t−1, x(i)

t )

−
N∑

i=1

log Z(x(i)) −
K∑

k=1

�2
k

2�2 . (5)

In formula (5), �2 determines the strength of the penalty.
Finding the best �2 can require a computationally intensive
parameter sweep. Fortunately, according to [15], the accuracy

of the final model does not appear to be sensitive to changes in
�2. In our experiment, �2 is set to 10. Given formula (5), we
can use Improved Iterative Scaling (IIS) method or Numerical
Optimization Techniques to find its maximum value and solve
�={�k}. We adopt L-BFGS [16] afforded by MALLET toolbox
[17] to do that, which is a Numerical Optimization Techniques
with high efficiency compared to IIS method. If � = {�k} is
available, we can use formula (1) to do NER.

Linear-chain CRFs model has efficient algorithms when
using formula (1), such as forward backward or Viterbi.
Similar to HMM, we can define the forward backward
probability for linear-chain CRFs. The forward value �i (y)

is defined as the probability of being in state y at time
i given the observation up to i. The recursive step is
�i+1(y) = ∑

y′�i (y
′) exp(

∑
k�kfk(y

′, y, x, i + 1)).
Similarly, �i (y) is the probability of starting from state y at

time i given the observation sequence after time i. The recursive
step is �i (y

′) = ∑
y exp(

∑
k�kfk(y

′, y, x, i + 1))�i+1(y).
The forward–backward and Viterbi algorithms can be derived

accordingly [15].
For biological NER problem, the input sequence x is a sen-

tence, the output sequences y are corresponding labels. The
function set {fk(y, y′, xt )}Kk=1 contains binary-value functions,
which embody the features of the training data. For example
fk(y, y′, xt ) may be defined as

fk(y, y′, xt ) =
{1 if WORDt = T ,WORDt+1 = cells,

y′ = O, y = B-cell_type
0 others

}
.

4. Features

In order to describe the complexity language phenomena
in biological literatures, we involve orthographical features,
context features, word shape features, prefix and suffix fea-
tures, Part of Speech (POS) features and shallow syntactic fea-
tures. Compared to other existing biological NER systems us-
ing CRFs, we first introduce shallow syntactic features in CRFs
model. Shallow syntactic features are embodied using chunk
labels (therefore, chunking features and shallow syntactic fea-
tures have the same meaning in this paper). One of the most
remarkable advantages of CRFs model is that it is convenient
to involve rich features without considering the dependency of
features. Also, when new features are added, the model does
not need modification.

4.1. Shallow syntactic features

In order to get shallow syntactic features, we use GENIA
Tagger [18] to do text chunking. Text chunking is the tech-
nique of recognizing relatively simple syntactic structures. It
consists of dividing a text into phrases in such a way that syn-
tactically related words become members of the same phrase.
These phrases are non-overlapping which means that one word
can only be a member of one chunk [19]. After chunking, each
token will be assigned a chunk label.
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Table 2
Orthographical features

Feature name Regular expression

ALLCAPS [A–Z]+
INITCAP ˆ[A–Z].*
CAPSMIX .*[A–Z][a–z].∗|.∗[a–z][A–Z].*
SINGLE CHAR [A–Za–z]
HAS DIGIT .*[0–9].*
SINGLE DIGIT [0–9]
DOUBLE DIGIT [0–9][0–9]
NATURAL NUMBER [0–9]+
REAL NUMBER [−0 − 9] + [., ] + [0 − 9., ]+
HAS DASH .*–.*
INIT DASH –.*
END DASH .*–
ALPHA NUMERIC (.*[A–Za–z].*[0–9].*)|(.*[0–9].*[A–Za–z].*)
ROMAN [IVXDLCM]+
PUNCTUATION [, .; :?! − +]

The syntactic information contained in chunk labels can af-
ford much more reliable clues for NER than literal information.
For example, a noun chunk is more likely to form an entity. In
our research, shallow syntactic features include chunk labels
with a window of size 5. We use “c” which denotes a chunk
label, −n denotes n position prior to target token, +n denotes n
position after target token. The chunk features can be denoted
as c−2, c−1, c0, c1, c2. Besides, some combined features are
used in order to make full use of syntactic features. We employ
three kinds of combined features: p-1c0, c0t0 and p0c0, where
p denotes a POS tag and t denotes a token.

4.2. Other features

Orthographical features: Orthographical features describe
how a token is structured. For example, whether it contains both
upper and lower letters, whether it contains digits and whether
it contains special character. Orthographical features are impor-
tant to biological NER for its special structures. We use regular
expressions to characterize orthographical features which are
listed in Table 2. Some of them are also used in [1,9].

Word shape features: Tokens with similar word shape may
belong to the same category [13]. We come up with a simple
way to normalize all similar tokens. According to our method,
upper-case characters are all substituted by “X”, lower-case
characters are all substituted by “x”, digits are all substituted by
“0” and other characters are substituted by “_”. For example,
“IL-3”, “IL-4” and “IL-5” will be normalized as “XX_d”. Thus,
these tokens can share the weight of feature “XX_d”. To further
normalize these tokens, we substitute all consecutive strings of
identical characters with one character. For example, “XX_d”
is normalized to “X_d”.

Prefix and suffix features: Some prefixes and suffixes can
provide good clues for NER. For example, tokens ending in
“ase” are usually proteins; tokens ending in “RNA” are usually
RNAs. In our work, the length range of affix is 3–5. If the
length is too short, the distinguishing ability of the affix will

decrease. The frequency of the affix will be low if the length
of affix is too long.

Context feature: Tokens near the target token may be indica-
tors of its category. For example, “IL-3” may belong to “DNA”
or “protein”. If we know the next token is “gene”, we can de-
cide that it belongs to “DNA” category. According to [1,9], we
choose five as the context window size, i.e. the target token,
the two tokens right prior to target token and the two tokens
right after target token.

POS features: The granule of POS features is larger than
context features, which will help to increase the generalization
of the model. GENIA Tagger is used to do POS tagging. GENIA
Tagger is trained on biological literatures, whose accuracy is
98.20% as described in [18]. For POS features, we use the same
window size as context features.

5. Experiment

In the experiments, JNLPBA data set1 is adopted. The mo-
tivations of our experiments lie in two folders: (1) to indicate
the effect of our method; (2) to show the function of each kind
of feature in detail.

5.1. Experiment data sets

The basic statistics information of the data set is summa-
rized in Tables 3 and 4. JNLPBA training set consists of 2000
MEDLINE abstracts retrieved using the search terms “human”,
“blood cell” and “transcription factor”. These abstracts are then
annotated manually based on the GENIA ontology. Each bio-
logical NE is annotated into one of five NE classes in Table 1
according to its chemical structure, which is usually indepen-
dent of the biological context in which it appears.

For JNLPBA testing set, a new collection of MEDLINE ab-
stracts are annotated. Four hundred and four abstracts are used
that are annotated for the same classes of entities as in the train-
ing set: half of them were from the same domain as the training
data and the other half of them were from the super-domain of
“blood cells” and “transcription factors”. That would provide
an important test of generalization in the methods used [2].

Table 3
Composition of JNLPBA data set

Data set # abs # sen # tokens

Training set 2000 18,546 472,006
Test set 404 3856 96,780

Table 4
Entity distribution in JNLPBA data set

Data set # protein # DNA # RNA # cell_type # cell_line All

Training set 30,269 9533 951 6718 3830 51,031
Test set 5067 1056 118 1921 500 8662

1 http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/ERtask/report.html

http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/ERtask/report.html
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5.2. Experiment results

We use JNLPBA training set to train our model. Evaluation
is done at JNLPBA test set. Training our model with all feature
sets in Section 4 took approximately 45 h (3.0 G CPU, 1.0 G
Memory, 400 iterations). Once trained, the model can annotate
the test data in less than a minute. The experiment results are
shown in Table 5. In Table 5, P, denoting the precision, is the
number of NEs a system correctly detected divided by the total
number of NEs identified by the system. R, denoting the recall,
is the number of NEs a system correctly detected divided by the
total number of NEs contained in the input text. F =2PR/(P +
R) stands for the synthetic performance of a system.

Our system achieves an F-measure of 71.20%, which is better
than most of the state-of-the-art systems. Especially for protein,
the most important entity category, our system’s F-measure
is 73.27%, which is much closer to the best system with F-
measure 73.77% of protein in JNLPBA 2004.

5.2.1. The effect of each features set
Table 6 shows our system’s performance with different fea-

ture sets. The baseline feature set includes orthographical fea-
tures, context features, word shape features and affixes features.
These features are literal features and easy to be collected. So
they are often adopted by most biological NER systems, such as
[1,9,13]. POS features contain larger granule knowledge than
literal features. They can increase the model’s generalization, so
the F-measure increases to 70.33% from 69.52% when adding

Table 5
Experiment results

Entity category P(%) R(%) F (%)

Protein 69.03 78.05 73.27
DNA 70.98 66.48 68.66
RNA 68.91 69.49 69.20
Cell_line 52.21 56.60 54.32
Cell_type 80.23 64.45 71.48
Overall 70.16 72.27 71.20

Table 6
The effect of different features set

Feature set P(%) R(%) F (%)

Baseline 69.01 70.03 69.52
+POS features 69.17 71.53 70.33
+Chunk features 70.16 72.27 71.20

1st best 

B-Protein 

I-protein 

I-protein 

O

2nd best 

B-Protein 

I-protein 

I-protein 

O

1st best 

B-Protein 

I-protein 

I-protein 

O

2nd best 

B-DNA 

I-DNA

I-DNA

I-DNA

2nd best 

B-Protein 

I-protein 

I-protein 

O

1st best 

B-DNA 

I-DNA

I-DNA

I-DNA

Baseline +POS features +chunk features 

Fig. 2. Two-best results of each feature set.

them into the model. Chunk features contain syntactic infor-
mation which is more general linguistic knowledge than POS
features, so we can see that involving shallow syntactic features
can increase the performance from 70.33% to 71.20%. From
Table 6, we can conclude that features containing large granule
linguistic knowledge can prompt the CRFs model’s generaliza-
tion and get better results.

Following example shows the effect of each kind of feature
vividly.

Example 1. Input sentence: Coordinate regulation of HLA
class II gene expression during development and... . The cor-
rect label sequence of the italic part is “B-DNA I-DNA I-DNA
I-DNA”. The 2-best label sequences of the input sentence are
outputted by our system (“2-best label sequences” means two
label sequences with the top two highest probabilities). The
2-best label sequences corresponding to the italic part of the
input sentence when using different feature sets in Table 6 are
shown in Fig. 2. When baseline feature set is used, the correct
result is not in the 2-best candidates. After adding POS fea-
tures to the baseline feature set, the correct result is the second
candidate in 2-best list. When chunk features are involved, the
first best result of our system is the correct label sequence.

5.2.2. Comparison with other works
In order to compare our work with others, Table 7 lists the

performance of other systems adopting CRFs model and the
state-of-the-art system. All results are tested in the same data
set, so they are comparable.

System 3 only involves orthographical features, context fea-
tures, word shape features and prefix and suffix features. Its
performance is near our baseline system. System 2 adds POS
features and lexical features into system 1. Besides, system 2
adopts two post-processing methods including nested NE reso-
lution and reclassification based on the rightmost word. But the
F-measure of system 2 is still lower than our system with 1%.
This also shows that syntactic features are effective in prompt-
ing the model’s performance. System 4 is the state-of-the-art

Table 7
Performance comparison

Number System name P(%) R(%) F (%)

1 Our system 70.2 72.3 71.2
2 Tzong-han Tsai (CRF) [1] 69.1 71.3 70.2
3 Settles et al. (2004) (CRF) [9] 69.3 70.3 69.8
4 Zhao [6] 69.4 76.0 72.6
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system in JNLPBA2004. But according to [6], system 4 also
needs lexical resource and post-processing. The F-measure of
system 4 will be below 70% if post-processing is removed.
Our system needs no lexical resource and post-processing. It
achieves good performance with good adaptability.

6. Conclusion

Conditional Random Fields for sequences labeling offer ad-
vantages over both generative models like HMM and classifiers
applied at each sequence position. In this paper, we cast bio-
logical NER as a sequential labeling problem and utilize Con-
ditional Random Fields model involving rich features to solve
it.

The main contributions of this research are:

• Firstly introduce shallow syntactic features to CRFs model
and do boundary detection and semantic labeling at the
same time. Experiment shows that shallow syntactic features
greatly improve the model’s performance.

• Show the effect of POS features and shallow syntactic fea-
tures in detail; conclude that large granule linguistic knowl-
edge can prompt the CRFs model’s generalization, which can
afford valuable reference to other researchers.

• Achieve a biological NER system with an F-measure of
71.2% in JNLPBA test data and which is better than most of
state-of-the-art systems. The system has strong adaptability
because it does not need any dictionary resources and post-
processing.

7. Summary

Biological research literature is a major repository of knowl-
edge. Unfortunately, the amount of literature has become so
large that it is hard to find the information of interest on a par-
ticular topic quickly. Thus automatic literature mining is an ur-
gent demand of biological researchers. Biological named entity
recognition is a critical task for automatically mining knowl-
edge from biological literature.

In this research, biological named entities recognition is cast
as a sequential labeling problem, which means each token in
a sentence will be assigned a label. The label will indicate
whether the associated token is a part of an entity and the
entity category if it is. Conditional Random Fields model is
introduced to address this sequential labeling problem due to
sound theoretical basis and outstanding practical performance
in similar tasks compared to other stochastic models.

Under the framework of Conditional Random Fields model,
rich features including literal, context and semantics are in-
volved. In these features, shallow syntactic features are first in-
troduced into Conditional Random Fields model and do bound-
ary detection and semantic labeling at the same time, which ef-
fectively improve the model’s performance. Experiments show
that our method can achieve an F-measure of 71.2% in an open
evaluation data, which is better than most of state-of-the-art
systems.

The effect of each kind of feature for biological named en-
tities recognition is also shown in detail through experiments.
One can conclude that features containing large granule lin-
guistic knowledge can prompt the CRFs model’s generaliza-
tion and get better recognition results according to the ex-
periment results, which can afford valuable reference to other
researchers. A comparison with others works shows that our
method achieves the best result among the known systems
adopting CRFs model. Also, our method needs no lexical re-
source and post-processing. It achieves good performance with
good adaptability.
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